Distributed and weighted extreme learning machine for imbalanced big data learning
نویسندگان
چکیده
منابع مشابه
A Novel Neutrosophic Weighted Extreme Learning Machine for Imbalanced Data Set
Extreme learning machine (ELM) is known as a kind of single-hidden layer feedforward network (SLFN), and has obtained considerable attention within the machine learning community and achieved various real-world applications. It has advantages such as good generalization performance, fast learning speed, and low computational cost. However, the ELM might have problems in the classification of im...
متن کاملElastic extreme learning machine for big data classification
Extreme Learning Machine (ELM) and its variants have been widely used for many applications due to its fast convergence and good generalization performance. Though the distributed ELM based on MapReduce framework can handle very large scale training dataset in big data applications, how to cope with its rapidly updating is still a challenging task. Therefore, in this paper, a novel Elastic Extr...
متن کاملA Distributed and Scalable Machine Learning Approach for Big Data
With the rapid development of data sensing and collection technologies, we can easily obtain large volumes of data (big data). However, big data poses huge challenges to many popular machine learning techniques which take all the data at the same time for processing. To address the big data related challenges, we first partition the data along its feature space, and apply the parallel block coo...
متن کاملStrategies and Principles of Distributed Machine Learning on Big Data
The rise of Big Data has led to new demands for Machine Learning (ML) systems to learn complex models with millions to billions of parameters, that promise adequate capacity to digest massive datasets and offer powerful predictive analytics (such as high-dimensional latent features, intermediate representations, and decision functions) thereupon. In order to run ML algorithms at such scales, on...
متن کاملDistributed Extreme Learning Machine for Nonlinear Learning over a Network
Distributed data collection and analysis over a network are ubiquitous, especially over a wireless sensor network (WSN). To our knowledge, the data model used in most of the distributed algorithms is linear. However, in real applications, the linearity of systems is not always guaranteed. In nonlinear cases, the single hidden layer feedforward neural network (SLFN) with radial basis function (R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsinghua Science and Technology
سال: 2017
ISSN: 1007-0214
DOI: 10.23919/tst.2017.7889638