Distributed dynamic state-input estimation for power networks of Microgrids and active distribution systems with unknown inputs
نویسندگان
چکیده
This paper proposes a joint input and state dynamic estimation scheme for power networks in microgrids active distribution systems with unknown inputs. The conventional of the transmission system relies on forecasting methods to obtain state-transition model variables. However, under highly conditions operation networks, this approach may become ineffective as accuracy is not guaranteed. To overcome such drawbacks, employs derived from physical equations branch currents. Specifically, network linear state-space model, which vector consists currents, bus voltages. estimate both variables, we propose Kalman-based filtering algorithms batch-mode regression form, considering cross-correlation between states For scalability proposed scheme, distributed implementation also presented. Complementarily, predicted vectors are leveraged bad data detection. Results carried out 13-bus microgrid real-time Opal-RT platform demonstrate effectiveness method comparison traditional weighted least square tracking methods.
منابع مشابه
coordination of protective schemes in distribution and subtransmission systems including distributed generation
نصب منابع پراکنده در سیستم های توزیع و فوق توزیع علاوه بر مزیت های فراوان، مشکلاتی را هم به همراه دارد. یکی از این مشکلات تأثیر این منابع روی اندازه جریان های اتصال کوتاه است. به طور معمول از حفاظت های مبتنی بر اصل جریان زیاد در سیستم های توزیع و فوق توزیع استفاده می شود. از مهمترین طرح های حفاظتی استفاده شده در فیدرهای توزیع، حفاظت فیوز- ریکلوزر است. همچنین از طرح های حفاظتی جریان زیاد جهتی در...
Partial state and unknown input estimation for time-delay systems
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date...
متن کاملState and unknown input estimation for linear discrete-time systems
This paper deals with a new type of estimator for discrete-time linear systems with unknown inputs. A constructive algorithm is given in order to analyze the state observability and the left invertibility of the system (i.e the possibility to recover the unknown inputs with the outputs) and then an estimator is designed. Copyright c ©2005 IFAC
متن کاملState estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming
Abstract: The paper is devoted to deriving a novel estimation algorithm for linear dynamic system with unknown inputs when observations contain outliers. The algorithm is derived for arbitrary input signals and does not require a priori statistical information concerning input signals. The filtering problem is considered as a control problem in which the unknown input is regarded as a controlli...
متن کاملThree-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs
The paper studies the problem of simultaneously estimating the state and the fault of linear stochastic discrete-time varying systems with unknown inputs. The fault and the unknown inputs affect both the system state and output. However, if the dynamical evolution models of the fault and the unknown inputs are available the filtering problem is solved by the Optimal Three-Stage Kalman Filter (O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electric Power Systems Research
سال: 2021
ISSN: ['1873-2046', '0378-7796']
DOI: https://doi.org/10.1016/j.epsr.2021.107510