Distributionally robust polynomial chance-constraints under mixture ambiguity sets
نویسندگان
چکیده
منابع مشابه
Optimized Bonferroni Approximations of Distributionally Robust Joint Chance Constraints
A distributionally robust joint chance constraint involves a set of uncertain linear inequalities which can be violated up to a given probability threshold , over a given family of probability distributions of the uncertain parameters. A conservative approximation of a joint chance constraint, often referred to as a Bonferroni approximation, uses the union bound to approximate the joint chance ...
متن کاملDistributionally robust chance constraints for non-linear uncertainties
This paper investigates the computational aspects of distributionally robust chance constrained optimization problems. In contrast to previous research that mainly focused on the linear case (with a few exceptions discussed in detail below), we consider the case where the constraints can be non-linear to the decision variable, and in particular to the uncertain parameters. This formulation is o...
متن کاملDistributionally Robust Optimization with Infinitely Constrained Ambiguity Sets
We consider a distributionally robust optimization problem where the ambiguity set of probability distributions is characterized by a tractable conic representable support set and expectation constraints. Specifically, we propose and motivate a new class of infinitely constrained ambiguity sets in which the number of expectation constraints could potentially be infinite. We show how the infinit...
متن کاملNear-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization
We propose a Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO) when the underlying distribution is defined by a finite-dimensional parameter. The key idea is to measure the relative size between a candidate ambiguity set and a specific, asymptotically optimal set. This asymptotically optimal set is provably the sm...
متن کاملNear-Optimal Ambiguity Sets for Distributionally Robust Optimization
We propose a novel, Bayesian framework for assessing the relative strengths of data-driven ambiguity sets in distributionally robust optimization (DRO). The key idea is to measure the relative size between a candidate ambiguity set and an asymptotically optimal set as the amount of data grows large. This asymptotically optimal set is provably the smallest convex ambiguity set that satisfies a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2019
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-019-01434-8