Doob, Ignatov and optional skipping

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doob , Ignatov and Optional Skipping

A general set of distribution-free conditions is described under which an i.i.d. sequence of random variables is preserved under optional skipping. 1. Introduction and motivation. This paper discusses a general set of conditions under which an i.i.d. sequence of random variables ξ 1 , ξ 2 ,. .. , taking values in a measurable space (X, B), with common distribution F , is preserved under " optio...

متن کامل

MDS codes in Doob graphs

Аннотация The Doob graph D(m, n), where m > 0, is the direct product of m copies of The Shrikhande graph and n copies of the complete graph K 4 on 4 vertices. The Doob graph D(m, n) is a distance-regular graph with the same parameters as the Hamming graph H(2m + n, 4). In this paper we consider MDS codes in Doob graphs with code distance d ≥ 3. We prove that if 2m + n > 6 and 2 < d < 2m + n, th...

متن کامل

Doob: a Half-century On

Probability theory, and its dynamic aspect stochastic process theory, is both a venerable subject, in that its roots go back to the mid-seventeenth century, and a young one, in that its modern formulation happened comparatively recently – well within living memory. The year 2003 marked the seventieth anniversary of Kolmogorov’s Grundbegriffe der Wahrscheinlichkeitsrechnung, usually regarded as ...

متن کامل

Perfect codes in Doob graphs

We study 1-perfect codes in Doob graphsD(m,n). We show that such codes that are linear over GR(4) exist if and only if n = (4γ+δ−1)/3 andm = (4γ+2δ−4γ+δ)/6 for some integers γ ≥ 0 and δ > 0. We also prove necessary conditions on (m,n) for 1-perfect codes that are linear over Z4 (we call such codes additive) to exist in D(m,n) graphs; for some of these parameters, we show the existence of codes....

متن کامل

Quantum Stochastic Integrals and Doob-meyer Decomposition

Abstract. We show that for a quantum L-martingale (X(t)), p > 2, there exists a Doob-Meyer decomposition of the submartingale (|X(t)|). A noncommutative counterpart of a classical process continuous with probability one is introduced, and a quantum stochastic integral of such a process with respect to an L-martingale, p > 2, is constructed. Using this construction, the uniqueness of the Doob-Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2002

ISSN: 0091-1798

DOI: 10.1214/aop/1039548377