Dopamine Receptor-Mediated Regulation of Striatal Cholinergic Activity
نویسندگان
چکیده
منابع مشابه
D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons.
Striatal cholinergic interneurons are critical elements of the striatal circuitry controlling motor planning, movement, and associative learning. Intrastriatal release of dopamine and inhibition of interneuron activity is thought to be a critical link between behaviorally relevant events, such as reward, and alterations in striatal function. However, the mechanisms mediating this modulation are...
متن کاملNicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission
In addition to dopamine neuron firing, cholinergic interneurons (ChIs) regulate dopamine release in the striatum via presynaptic nicotinic receptors (nAChRs) on dopamine axon terminals. Synchronous activity of ChIs is necessary to evoke dopamine release through this pathway. The frequency-dependence of disynaptic nicotinic modulation has led to the hypothesis that nAChRs act as a high-pass filt...
متن کاملCortical Control of Striatal Dopamine Transmission via Striatal Cholinergic Interneurons
Corticostriatal regulation of striatal dopamine (DA) transmission has long been postulated, but ionotropic glutamate receptors have not been localized directly to DA axons. Striatal cholinergic interneurons (ChIs) are emerging as major players in striatal function, and can govern DA transmission by activating nicotinic receptors (nAChRs) on DA axons. Cortical inputs to ChIs have historically be...
متن کاملPotentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons
Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bi...
متن کاملStriatal cholinergic receptor activation causes a rapid, selective, activity
Cortico-basal ganglia-thalamic (CBT) β oscillations (15–30 Hz) are elevated in Parkinson’s disease and correlated with movement disability. To date, no experimental paradigm outside of loss of dopamine has been able to specifically elevate β oscillations in the CBT loop. Here, we show that activation of striatal cholinergic receptors selectively increases β oscillations in mouse striatum. Furth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neurochemistry
سال: 2002
ISSN: 0022-3042
DOI: 10.1046/j.1471-4159.2000.0741514.x