Double exponential sums and congruences with intervals and exponential functions modulo a prime
نویسندگان
چکیده
منابع مشابه
Exponential Sums modulo Prime Powers
where p is a prime power with m ≥ 2, χ is a multiplicative character (mod p), epm(·) is the additive character, epm(x) = e 2πix pm , and f, g are rational functions with integer coefficients. It is understood, that the sum is only over values of x for which g and f and both defined as functions on Z/(p), and g is nonzero (mod p). The sum is trivial if f and g are both constants, so we shall alw...
متن کاملExponential Sums and Congruences with Factorials
We estimate the number of solutions of certain diagonal congruences involving factorials. We use these results to bound exponential sums with products of two factorials n!m! and also derive asymptotic formulas for the number of solutions of various congruences with factorials. For example, we prove that the products of two factorials n!m! with max{n,m} < p1/2+ε are uniformly distributed modulo ...
متن کاملBilinear Sums with Exponential Functions
Let g = 0,±1 be a fixed integer. Given two sequences of complex numbers (φm) ∞ m=1 and (ψn) ∞ n=1 and two sufficiently large integers M and N , we estimate the exponential sums ∑ p≤M gcd(ag,p)=1 ∑ 1≤n≤N φpψnep (ag ) , a ∈ Z, where the outer summation is taken over all primes p ≤ M with gcd(ag, p) = 1.
متن کاملCongruences and Exponential Sums with the Euler Function
where gcd(a, p) = 1, and N is sufficiently large. Our bounds are nontrivial for a wide range of values of p, starting with p ≥ logN . We remark that although it might be possible to improve on this power of logN , for very small values of p relative to N , it is simply not possible to obtain nontrivial bounds. In fact, it has been shown in Theorem 3.5 of [5] that for any prime number p of size ...
متن کاملNew estimates of double trigonometric sums with exponential functions
We establish a new bound for the exponential sum x∈X y∈Y γ(y) exp(2πiaλ xy /p) , where λ is an element of the residue ring modulo a large prime number p, X and Y are arbitrary subsets of the residue ring modulo p − 1 and γ(n) are any complex numbers with |γ(n)| ≤ 1. In particular, we improve several previously known bounds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2019
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2018.11.019