Dynamic ensemble selection for quantification tasks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From dynamic classifier selection to dynamic ensemble selection

In handwritten pattern recognition, the multiple classifier system has been shown to be useful for improving recognition rates. One of the most important tasks in optimizing a multiple classifier system is to select a group of adequate classifiers, known as an Ensemble of Classifiers (EoC), from a pool of classifiers. Static selection schemes select an EoC for all test patterns, and dynamic sel...

متن کامل

A New Dynamic Ensemble Selection Method for Numeral Recognition

An ensemble of classifiers (EoC) has been shown to be effective in improving classifier performance. To optimize EoC, the ensemble selection is one of the most imporatant issues. Dynamic scheme urges the use of different ensembles for different samples, but it has been shown that dynamic selection does not give better performance than static selection. We propose a dynamic selection scheme whic...

متن کامل

Online pruning of base classifiers for Dynamic Ensemble Selection

Dynamic Ensemble Selection (DES) techniques aim to select only the most competent classifiers for the classification of each test sample. The key issue in DES is how to estimate the competence of classifiers for the classification of each new test sample. Most DES techniques estimate the competence of classifiers using a given criterion over the set of nearest neighbors of the test sample in th...

متن کامل

Dynamic Ensemble Selection for Off-Line Signature Verification

Although not in widespread use in Signature Verification (SV), the performance of SV systems may be improved by using ensemble of classifiers (EoC). Given a diversified pool of classifiers, the selection of a subset to form an EoC may be performed either statically or dynamically. In this paper, two new dynamic selection (DS) strategies are proposed, namely OP-UNION and OP-ELIMINATE, both based...

متن کامل

A probabilistic model of classifier competence for dynamic ensemble selection

The concept of a classifier competence is fundamental to multiple classifier systems (MCSs). In this study, a method for calculating the classifier competence is developed using a probabilistic model. In the method, first a randomised reference classifier (RRC) whose class supports are realisations of the random variables with beta probability distributions is constructed. The parameters of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Fusion

سال: 2019

ISSN: 1566-2535

DOI: 10.1016/j.inffus.2018.01.001