Dynamic Pricing for Carriers in Physical Internet with Peak Demand Forecasting
نویسندگان
چکیده
منابع مشابه
Dynamic Pricing with Demand Covariates
We consider a firm that sells a product over T periods without knowing the demand function. The firm sequentially sets prices to earn revenue and to learn the underlying demand function simultaneously. In practice, this problem is commonly solved via greedy iterative least squares (GILS). At each time period, GILS estimates the demand as a linear function of the price by applying least squares ...
متن کاملChallenges in forecasting peak electricity demand
We want to forecast the peak electricity demand in a half-hour period in twenty years time. We have fifteen years of half-hourly electricity data, temperature data and some economic and demographic data. The location is South Australia: home to the most volatile electricity demand in the world.
متن کاملLess-than-truckload Dynamic Pricing Model in Physical Internet
Abstract: This paper investigates a decision-making problem consisting of less-than-truckload dynamic pricing (LTLDP) under Physical Internet (PI). PI can be seen as the interconnection of logistics networks via open PI-hubs, which can be considered as spot freight markets where LTL requests of different volume/destination continuously arrive over time for a short-stay. Carriers can bid for the...
متن کاملDynamic pricing with real-time demand learning
In many service industries, the firm adjusts the product price dynamically by taking into account the current product inventory and the future demand distribution. Because the firm can easily monitor the product inventory, the success of dynamic pricing relies on an accurate demand forecast. In this paper, we consider a situation where the firm does not have an accurate demand forecast, but can...
متن کاملDynamic pricing problems with elastic demand
We study a dynamic pricing problem for a company that sells a single product to a group of customers over a finite time horizon. These customers are price sensitive and the price of today influences the group of customers of tomorrow. The objective is to set the prices over time so as to maximize revenue. We study two customer models: a multiplicative and an additive model. Our main contributio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2019
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2019.11.439