Dynamical systems method (DSM) for selfadjoint operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical systems method (DSM) for selfadjoint operators

Let A be a selfadjoint linear operator in a Hilbert space H. The DSM (dynamical systems method) for solving equation Av = f consists of solving the Cauchy problem u̇ = Φ(t, u), u(0) = u0, where Φ is a suitable operator, and proving that i) ∃u(t) ∀t > 0, ii) ∃u(∞), and iii) A(u(∞)) = f . It is proved that if equation Av = f is solvable and u solves the problem u̇ = i(A + ia)u − if, u(0) = u0, wher...

متن کامل

Dynamical Systems Method (dsm) for Unbounded Operators

Let L be an unbounded linear operator in a real Hilbert space H, a generator of a C0 semigroup, and let g : H → H be a C2 loc nonlinear map. The DSM (dynamical systems method) for solving equation F (v) := Lv+ g(v) = 0 consists of solving the Cauchy problem u̇ = Φ(t, u), u(0) = u0, where Φ is a suitable operator, and proving that i) ∃u(t) ∀t > 0, ii) ∃u(∞), and iii) F (u(∞)) = 0. Conditions on L...

متن کامل

Dynamical Systems Method ( Dsm ) and Nonlinear Problems

The dynamical systems method (DSM), for solving operator equations, especially nonlinear and ill-posed, is developed in this paper. Consider an operator equation F (u) = 0 in a Hilbert space H and assume that this equation is solvable. Let us call the problem of solving this equation illposed if the operator F ′(u) is not boundedly invertible, and well-posed otherwise. The DSM for solving linea...

متن کامل

Dynamical Systems Method (DSM) for solving equations with monotone operators without smoothness assumptions on F′(u)

A version of the Dynamical Systems Method (DSM) for solving ill-posed nonlinear equations F (u) = f with monotone operators F in a Hilbert space is studied in this paper under less restrictive assumptions on the nonlinear operators F than the assumptions used earlier. A new method of proof of the basic results is used. An a posteriori stopping rule, based on a discrepancy-type principle, is pro...

متن کامل

A New Version of the Dynamical Systems Method (dsm) for Solving Nonlinear Equations with Monotone Operators

A version of the Dynamical Systems Method for solving ill-posed nonlinear monotone operator equations is studied in this paper. A discrepancy principle is proposed and justified. A numerical experiment was carried out with the new stopping rule. Numerical experiments show that the proposed stopping rule is efficient.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2007

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2006.06.044