Dynamics of a Micro Electrical Mechanical System Subject to Thermoelastic and Squeeze-Film Damping
نویسندگان
چکیده
منابع مشابه
Uncertainty quantification models for micro-scale squeeze-film damping
Two squeeze-film gas damping models are proposed to quantify uncertainties associated with the gap size and the ambient pressure. Modeling of gas damping has become a subject of increased interest in recent years due to its importance in micro-electro-mechanical systems (MEMS). In addition to the need for gas damping models for design of MEMS with movable micro-structures, knowledge of paramete...
متن کاملSqueeze-film damping of flexible microcantilevers
An improved theoretical approach is proposed to predict the dynamic behavior of long, slender and flexible microcantilevers affected by squeeze-film damping at low ambient pressures. Our approach extends recent continuum gas damping models (Veijola 2004 J. Micromech. Microeng. 14 1109–18, Gallis and Torczynski 2004 J. Microelectromech. Syst. 13 653–9), which were originally derived for a rigid ...
متن کاملThermoelastic damping in micro- and nanomechanical systems
The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechanical resonators is evaluated in light of recent efforts to design high-Q micrometerand nanometer-scale electromechanical systems. The equations of linear thermoelasticity are used to give a simple derivation for thermoelastic damping of small flexural vibrations in thin beams. It is shown that Z...
متن کاملSimulation Study of Inertial Micro-Switch as Influenced by Squeeze-Film Damping and Applied Acceleration Load
Squeeze-film damping and acceleration load are two major issues in the design of inertial micro-switches. In order to deeply and systematically study these two issues, this paper proposes a typical vertically-driven inertial micro-switch, wherein the air and electrode gaps were chosen to design the required damping ratio and threshold value, respectively. The switch was modeled by ANSYS Workben...
متن کاملA Low-G Silicon Inertial Micro-Switch with Enhanced Contact Effect Using Squeeze-Film Damping
Contact time is one of the most important properties for inertial micro-switches. However, it is usually less than 20 μs for the switch with rigid electrode, which is difficult for the external circuit to recognize. This issue is traditionally addressed by designing the switch with a keep-close function or flexible electrode. However, the switch with keep-close function requires an additional o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATEC Web of Conferences
سال: 2012
ISSN: 2261-236X
DOI: 10.1051/matecconf/20120104004