Dynamics of compact quantum metric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Quantum Metric Spaces

We give a brief survey of many of the high-lights of our present understanding of the young subject of quantum metric spaces, and of quantum Gromov-Hausdorff distance between them. We include examples. My interest in developing the theory of compact quantum metric spaces was stimulated by certain statements in the high-energy physics and string-theory literature, concerning non-commutative spac...

متن کامل

Θ-deformations as Compact Quantum Metric Spaces

LetM be a compact spin manifold with a smooth action of the ntorus. Connes and Landi constructed θ-deformations Mθ of M , parameterized by n×n real skew-symmetric matrices θ. TheMθ’s together with the canonical Dirac operator (D,H) on M are an isospectral deformation of M . The Dirac operator D defines a Lipschitz seminorm on C(Mθ), which defines a metric on the state space of C(Mθ). We show th...

متن کامل

Θ-deformations as Quantum Compact Metric Spaces

Let M be a compact spin manifold with a smooth action of the ntorus. Connes and Landi constructed θ-deformations Mθ of M , parameterized by n × n skew-symmetric matrices θ. The Mθ’s together with the canonical Dirac operator (D,H) on M are an isospectral deformation of M . The Dirac operator D defines a Lipschitz seminorm on C(Mθ), which defines a metric on the state space of C(Mθ). We show tha...

متن کامل

- Algebras as Compact Quantum Metric Spaces

Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We show that if G is a hyperbolic group and if l is a word-length function on G, then the topology from this metr...

متن کامل

Compact Quantum Metric Spaces and Ergodic Actions of Compact Quantum Groups

We show that for any co-amenable compact quantum group A = C(G) there exists a unique compact Hausdorff topology on the set EA(G) of isomorphism classes of ergodic actions of G such that the following holds: for any continuous field of ergodic actions of G over a locally compact Hausdorff space T the map T → EA(G) sending each t in T to the isomorphism class of the fibre at t is continuous if a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2020

ISSN: 0143-3857,1469-4417

DOI: 10.1017/etds.2020.34