Edge-Guided Non-Local Fully Convolutional Network for Salient Object Detection

نویسندگان

چکیده

Fully Convolutional Neural Network (FCN) has been widely applied to salient object detection recently by virtue of high-level semantic feature extraction, but existing FCN-based methods still suffer from continuous striding and pooling operations leading loss spatial structure blurred edges. To maintain the clear edge objects, we propose a novel Edge-guided Non-local FCN (ENFNet) perform edge-guided learning for accurate detection. In specific, extract hierarchical global local information in incorporate non-local features effective representations. preserve good boundaries guidance block embed prior knowledge into maps. The not only performs feature-wise manipulation also spatial-wise transformation embeddings. Our model is trained on MSRA-B dataset tested five popular benchmark datasets. Comparing with state-of-the-art methods, proposed method performance well

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

Deformable Part-based Fully Convolutional Network for Object Detection

Existing region-based object detectors are limited to regions with fixed box geometry to represent objects, even if those are highly non-rectangular. In this paper we introduce DP-FCN, a deep model for object detection which explicitly adapts to shapes of objects with deformable parts. Without additional annotations, it learns to focus on discriminative elements and to align them, and simultane...

متن کامل

PDNet: Prior-model Guided Depth-enhanced Network for Salient Object Detection

Fully convolutional neural networks (FCNs) have shown outstanding performance in many computer vision tasks including salient object detection. However, there still remains two issues needed to be addressed in deep learning based saliency detection. One is the lack of tremendous amount of annotated data to train a network. The other is the lack of robustness for extracting salient objects in im...

متن کامل

Automated Edge Detection Using Convolutional Neural Network

The edge detection on the images is so important for image processing. It is used in a various fields of applications ranging from real-time video surveillance and traffic management to medical imaging applications. Currently, there is not a single edge detector that has both efficiency and reliability. Traditional differential filter-based algorithms have the advantage of theoretical strictnes...

متن کامل

Fully Convolutional Regression Network for Accurate Detection of Measurement Points

Accurate automatic detection of measurement points in ultrasound video sequences is challenging due to noise, shadows, anatomical differences, and scan plane variation. This paper proposes to address these challenges by a Fully Convolutional Neural Network (FCN) trained to regress the point locations. The series of convolutional and pooling layers is followed by a collection of upsampling and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology

سال: 2021

ISSN: ['1051-8215', '1558-2205']

DOI: https://doi.org/10.1109/tcsvt.2020.2980853