Effects of Three Parastagonospora nodorum Necrotrophic Effectors on Spring Wheat under Norwegian Field Conditions
نویسندگان
چکیده
منابع مشابه
SnPKS19 Encodes the Polyketide Synthase for Alternariol Mycotoxin Biosynthesis in the Wheat Pathogen Parastagonospora nodorum.
Alternariol (AOH) is an important mycotoxin from the Alternaria fungi. AOH was detected for the first time in the wheat pathogen Parastagonospora nodorum in a recent study. Here, we exploited reverse genetics to demonstrate that SNOG_15829 (SnPKS19), a close homolog of Penicillium aethiopicum norlichexanthone (NLX) synthase gene gsfA, is required for AOH production. We further validate that SnP...
متن کاملA genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum
The model pathogen Parastagonospora nodorum is a necrotroph and the causal agent of the wheat disease Septoria nodorum blotch (SNB). The sequenced P. nodorum genome has revealed that the fungus harbours a large number of secondary metabolite genes. Secondary metabolites are known to play important roles in the virulence of plant pathogens, but limited knowledge is available about the SM reperto...
متن کاملFine-Mapping the Wheat Snn1 Locus Conferring Sensitivity to the Parastagonospora nodorum Necrotrophic Effector SnTox1 Using an Eight Founder Multiparent Advanced Generation Inter-Cross Population.
The necrotrophic fungus Parastagonospora nodorum is an important pathogen of one of the world's most economically important cereal crops, wheat (Triticum aestivum L.). P. nodorum produces necrotrophic protein effectors that mediate host cell death, providing nutrients for continuation of the infection process. The recent discovery of pathogen effectors has revolutionized disease resistance bree...
متن کاملAn in planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum.
Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-...
متن کاملFunctional redundancy of necrotrophic effectors – consequences for exploitation for breeding
Necrotrophic diseases of wheat cause major losses in most wheat growing areas of world. Tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (SNB; Parastagonospora nodorum) have been shown to reduce yields by 10-20% across entire agri-ecological zones despite the application of fungicides and a heavy focus over the last 30 years on resistance breeding. Efforts by breede...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crop Science
سال: 2018
ISSN: 0011-183X
DOI: 10.2135/cropsci2017.05.0281