Eigenvalue problems in

نویسندگان

چکیده

In this article we characterize the L mathvariant="normal">∞ \mathrm {L}^\infty eigenvalue problem associated to Rayleigh quotient alttext="double-vertical-bar nabla u double-vertical-bar Subscript Sub infinity Baseline slash fence="false" stretchy="false">‖ mathvariant="normal">∇<!-- ∇ <mml:mi>u class="MJX-TeXAtom-CLOSE"> stretchy="true">/ class="MJX-TeXAtom-OPEN"> encoding="application/x-tex">\left .{\|\nabla u\|_{\mathrm {L}^\infty }}\middle /{\|u\|_\infty }\right . and relate it a divergence-form PDE, similarly what is known for p"> p {L}^p problems alttext="p"> encoding="application/x-tex">p -Laplacian alttext="p greater-than &gt; encoding="application/x-tex">p&gt;\infty . Contrary existing methods, which study -problems as limits of right-arrow stretchy="false">→<!-- → encoding="application/x-tex">p\to \infty , develop novel framework analyzing limiting directly using convex analysis geometric measure theory. For this, derive fine characterization subdifferential Lipschitz-constant-functional alttext="u from bar stretchy="false">↦<!-- ↦ encoding="application/x-tex">u\mapsto \|\nabla } We show that takes form alttext="lamda nu equals minus d i v left-parenthesis tau right-parenthesis"> λ<!-- λ <mml:mi>ν<!-- ν <mml:mo>= −<!-- − <mml:mi>div ⁡<!-- ⁡ stretchy="false">( τ<!-- τ stretchy="false">) encoding="application/x-tex">\lambda \nu =-\operatorname {div}(\tau \nabla _\tau u) where alttext="nu"> encoding="application/x-tex">\nu alttext="tau"> encoding="application/x-tex">\tau are non-negative measures concentrated alttext="StartAbsoluteValue EndAbsoluteValue"> stretchy="false">| encoding="application/x-tex">|u| respectively encoding="application/x-tex">|\nabla u| maximal, alttext="nabla u"> encoding="application/x-tex">\nabla u tangential gradient alttext="u"> encoding="application/x-tex">u with respect Lastly, investigate dual whose minimizers solve an optimal transport generalized Kantorovich–Rubinstein norm. Our results apply all stationary points quotient, including ground states, harmonic potentials, distance functions, etc., generalize in literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Non Linear Eigenvalue Problems

In this paper we consider generalized eigenvalue problems for a family of operators with a polynomial dependence on a complex parameter. This problem is equivalent to a genuine non self-adjoint operator. We discuss here existence of non trivial eigenstates for models coming from analytic theory of smoothness for P.D.E. We shall review some old results and present recent improvements on this sub...

متن کامل

Nonlinear Eigenvalue Problems

Heinrich Voss Hamburg University of Technology 115.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-2 115.2 Analytic matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-3 115.3 Variational Characterization of Eigenvalues . . . . . . . . 115-7 115.4 General Rayleigh Functionals . . . . . . . . . . . . . . . . . . . ...

متن کامل

Diagonalizable Quadratic Eigenvalue Problems

A system is defined to be an n× n matrix function L(λ) = λ2M + λD +K where M, D, K ∈ Cn×n and M is nonsingular. First, a careful review is made of the possibility of direct decoupling to a diagonal (real or complex) system by applying congruence or strict equivalence transformations to L(λ). However, the main contribution is a complete description of the much wider class of systems which can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications of the American Mathematical Society

سال: 2022

ISSN: ['2692-3688']

DOI: https://doi.org/10.1090/cams/11