Eigenvalue problems, spectral parameter power series, and modern applications
نویسندگان
چکیده
منابع مشابه
Spectral parameter power series for Sturm-Liouville problems
We consider a recently discovered representation for the general solution of the Sturm-Liouville equation as a spectral parameter power series (SPPS). The coefficients of the power series are given in terms of a particular solution of the Sturm-Liouville equation with the zero spectral parameter. We show that, among other possible applications, this provides a new and efficient numerical method...
متن کاملSpectral parameter power series for perturbed Bessel equations
A spectral parameter power series (SPPS) representation for regular solutions of singular Bessel type Sturm-Liouville equations with complex coefficients is obtained as well as an SPPS representation for the (entire) characteristic function of the corresponding spectral problem on a finite interval. It is proved that the set of zeros of the characteristic function coincides with the set of all ...
متن کاملNonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods
We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and wi...
متن کاملInverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملInverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions
In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining a new Hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in the Applied Sciences
سال: 2014
ISSN: 0170-4214
DOI: 10.1002/mma.3213