Electrical pulse fabrication of graphene nanopores in electrolyte solution
نویسندگان
چکیده
منابع مشابه
Electrical pulse fabrication of graphene nanopores in electrolyte solution.
Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene ...
متن کاملMolecule-hugging graphene nanopores.
It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation...
متن کاملFabrication and Electrical Properties of Stacked Graphene Monolayers
We develop a simple method to fabricate the two-stacked graphene monolayers and investigate the electronic transport in such a system. The independence of the two graphene monolayers gives rise to the asymmetric resistance-gate voltage curves and an eight-fold degeneracy of Landau level. The position of the maximum resistance of the transfer curves shifts towards higher gate voltage with increa...
متن کاملAnalysis of electrolyte transport through charged nanopores.
We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt flux, and fluid velocity) and driving forces (difference in elec...
متن کاملFabrication of Highly Ordered Gold Nanorods Film Using Alumina Nanopores
A simple method for fabrication of highly ordered gold nanorod film is introduced in this article. The procedure is based on thermal evaporation of gold into a porous anodic alumina film (PAA). The PPA film was fabricated by combining the hard and mild anodization. This combination effectively decreases the processing time of fabrication of highly ordered porous anodic alumina film with c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2015
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4921620