Embeddings of Lipschitz-free spaces into ℓ1

نویسندگان

چکیده

We show that, for a separable and complete metric space $M$, the Lipschitz-free $\mathcal F(M)$ embeds linearly almost-isometrically into $\ell_1$ if only $M$ is subset of an $\mathbb R$-tree with length measure 0. Moreover, it isometrically closure set branching points (taken in any minimal that contains $M$) negligible. also prove R$-tree, every extreme point unit ball element form $(\delta(x)-\delta(y))/d(x,y)$ $x\neq y\in M$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best constants for Lipschitz embeddings of metric spaces into c

We answer a question of Aharoni by showing that every separable metric space can be Lipschitz 2-embedded into c0 and this result is sharp; this improves earlier estimates of Aharoni, Assouad and Pelant. We use our methods to examine the best constant for Lipschitz embeddings of the classical `p-spaces into c0 and give other applications. We prove that if a Banach space embeds almost isometrical...

متن کامل

Note on bi-Lipschitz embeddings into normed spaces

Let (X, d), (Y, ρ) be metric spaces and f : X → Y an injective mapping. We put ‖f‖Lip = sup{ρ(f(x), f(y))/d(x, y); x, y ∈ X, x 6= y}, and dist(f) = ‖f‖Lip.‖f ‖Lip (the distortion of the mapping f). We investigate the minimum dimension N such that every n-point metric space can be embedded into the space lN ∞ with a prescribed distortion D. We obtain that this is possible for N ≥ C(logn)2n3/D, w...

متن کامل

Lipschitz - free Banach spaces

We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y , then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipsch...

متن کامل

Lipschitz and Path Isometric Embeddings of Metric Spaces

We prove that each sub-Riemannian manifold can be embedded in some Euclidean space preserving the length of all the curves in the manifold. The result is an extension of Nash C Embedding Theorem. For more general metric spaces the same result is false, e.g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of finite Hausdorff dimension can be embedded in some Eu...

متن کامل

Improved lower bounds for embeddings into L1

We simplify and improve upon recent lower bounds on the minimum distortion of embedding certain finite metric spaces into L1. In particular, we show that for every n ≥ 1, there is an n-point metric space of negative type that requires a distortion of Ω(log log n) for such an embedding, implying the same lower bound on the integrality gap of a well-known semidefinite programming relaxation for s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2021

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2020.108916