Emotion recognition method using entropy analysis of EEG signals
نویسندگان
چکیده
منابع مشابه
Emotion recognition method using entropy analysis of EEG signals
This paper proposes an emotion recognition system using EEG signals, therefore a new approach to emotion state analysis by approximate (ApEn) and wavelet entropy (WE) is described. We have used EEG signals recorded during emotion in five channels (FP1, FP2, T3, T4 and Pz), under pictures induction environment (calmneutral and negative excited) for participants. After a brief introduction to the...
متن کاملComparison of ERP & Entropy based Emotion Classification using EEG signals
Emotions are necessary to understand the behavior of an individual. andrealistic decision-making. Since number of techniques can be used for emotion recognition such as voice, facial expression of an individual but these channels can be faked. In this paper, main emphasis is given toward the acquisition of EEG signal emotion evoking picturesprovided by International Affective Picture S decompos...
متن کاملAssessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis
Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...
متن کاملStudy on Arousal Recognition Method Using Electroencephalogram ( EEG ) Signals
Improving arousal recognition accuracy based on EEG signals is important for emotion recognition. In this research, discrete wavelet transform was employed to extract features and cross-level method was proposed to select effective features. Cross-level method showed a great potential for 2-level arousal classification and the recognition accuracy reached to 91.8%. Besides, sensitivity of EEG c...
متن کاملEvaluating Classifiers for Emotion Recognition Using EEG
There are several ways of recording psychophysiology data from humans, for example Galvanic Skin Response (GSR), Electromyography (EMG), Electrocardiogram (ECG) and Electroencephalography (EEG). In this paper we focus on emotion detection using EEG. Various machine learning techniques can be used on the recorded EEG data to classify emotional states. K-Nearest Neighbor (KNN), Bayesian Network (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Image, Graphics and Signal Processing
سال: 2011
ISSN: 2074-9074,2074-9082
DOI: 10.5815/ijigsp.2011.05.05