Energy Efficiency Optimization for NOMA-Based Cognitive Radio With Energy Harvesting
نویسندگان
چکیده
منابع مشابه
Leasing-Based Performance Analysis in Energy Harvesting Cognitive Radio Networks
In this paper, we consider an energy harvesting cognitive radio network (CRN), where both of primary user (PU) and secondary user (SU) are operating in time slotted mode, and the SU powered exclusively by the energy harvested from the radio signal of the PU. The SU can only perform either energy harvesting or data transmission due to the hardware limitation. In this case, the entire time-slot i...
متن کاملEnergy-Efficient D2D Communications Underlaying NOMA-Based Networks with Energy Harvesting
This letter investigates the resource allocation problem in device-to-device (D2D) communications underlaying a non-orthogonal multiple access (NOMA)-based cellular network, where both cellular users and D2D users harvest energy from the hybrid access point in the downlink and transmit information in the uplink. We propose a low-complexity iterative algorithm to maximize the energy efficiency o...
متن کاملOutage Probability Minimization for Energy Harvesting Cognitive Radio Sensor Networks
The incorporation of cognitive radio (CR) capability in wireless sensor networks yields a promising network paradigm known as CR sensor networks (CRSNs), which is able to provide spectrum efficient data communication. However, due to the high energy consumption results from spectrum sensing, as well as subsequent data transmission, the energy supply for the conventional sensor nodes powered by ...
متن کاملThroughput maximization-based optimal power allocation for energy-harvesting cognitive radio networks with multiusers
An optimal power allocation (OPA) policy for orthogonal frequency division multiplexing (OFDM)-based cognitive radio networks (CRNs) using underlay spectrum access model is presented under multiple secondary users (SUs) with energy harvesting (EH). The proposed algorithm can allocate transmission power to each SU on each subcarrier with the objective of maximizing the average throughput of seco...
متن کاملMultichannel-Sensing Scheduling and Transmission-Energy Optimizing in Cognitive Radio Networks with Energy Harvesting
This paper considers cognitive radio networks (CRNs) utilizing multiple time-slotted primary channels in which cognitive users (CUs) are powered by energy harvesters. The CUs are under the consideration that hardware constraints on radio devices only allow them to sense and transmit on one channel at a time. For a scenario where the arrival of harvested energy packets and the battery capacity a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2940698