Energy-efficient multiuser and multitask computation offloading optimization method

نویسندگان

چکیده

For dynamic application scenarios of Mobile Edge Computing (MEC), an Energy-efficient Multiuser and Multitask Computation Offloading (EMMCO) optimization method is proposed. Under the consideration multiuser multitask computation offloading, first, EMMCO takes into account existence dependencies among different tasks within implementation, abstracts these as a Directed Acyclic Graph (DAG), models offloading problem Markov decision process. Subsequently, task embedding sequence in DAG fed to RNN encoder-decoder neural network with combination attention mechanism, long-term are successfully captured by this scheme. Finally, Improved Policy Loss Clip-based PPO2 (IPLC-PPO2) algorithm developed, trained developed algorithm. The loss function IPLC-PPO2 utilized preference for training process, parameters continuously updated select optimal scheduling decisions. Simulation results demonstrate that proposed can achieve lower latency, reduce energy consumption, obtain significant improvement Quality Service (QoS) than compared algorithms under situations mobile edge network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asynchronous Mobile-Edge Computation Offloading: Energy-Efficient Resource Management

Mobile-edge computation offloading (MECO) is an emerging technology for enhancing mobiles’ computation capabilities and prolonging their battery lives, by offloading intensive computation from mobiles to nearby servers such as base stations. In this paper, we study the energy-efficient resourcemanagement policy for the asynchronous MECO system, where the mobiles have heterogeneous inputdata arr...

متن کامل

Mobile Offloading for Energy-efficient Computation on Smartphones

Mobile offloading enables mobile devices to distribute computation-intensive tasks to the cloud or other devices for energy conservation or performance gains. In principle, the idea is to trade the relatively low communication energy expense for high computation power consumption. In this thesis, we first focus on the technique of mobile code offloading to the cloud by proposing the new techniq...

متن کامل

economic optimization and energy consumption in tray dryers

دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...

15 صفحه اول

Energy and Performance Efficient Computation Offloading for Deep Neural Networks in a Mobile Cloud Computing Environment

In today’s computing technology scene, mobile devices are considered to be computationally weak, while large cloud servers are capable of handling expensive workloads, therefore, intensive computing tasks are typically offloaded to the cloud. Recent advances in learning techniques have enabled Deep Neural Networks (DNNs) to be deployed in a wide range of applications. Commercial speech based in...

متن کامل

A Review on Energy Efficient Computation Offloading Frameworks for Mobile Cloud Computing

Mobile Cloud Computing is an evolving technology that integrates the concept of cloud computing into the mobile environment. Smartphones are boon in the world of technology but they have certain limitations (e.g. battery life, network bandwidth, storage, energy) when running complex applications which require large computations. Using Cloud Computing in mobile phones, these limitations can be a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Intelligent and converged networks

سال: 2023

ISSN: ['2708-6240']

DOI: https://doi.org/10.23919/icn.2023.0007