Energy-Minimizing, Symmetric Discretizations for Anisotropic Meshes and Energy Functional Extrapolation

نویسندگان

چکیده

Self-adjoint differential operators often arise from variational calculus on energy functionals. In this case, a direct discretization of the functional induces operator. Following approach, discrete equations are naturally symmetric if is self-adjoint, property that may be lost when using standard difference formulas nonuniform meshes or operator has varying coefficients. Low order finite element systems can derived by approach in systematic way and logically structured they become compact formulas. Extrapolation used then lead to higher oder approximations A rigorous analysis presented for extrapolation combination with nonstandard integration rules elements. likewise applied matrix-free stencils. our applications, both schemes show up quartic convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of discretizations of the Stokes problem on anisotropic meshes

Abstra t Anisotropi features of the solution of ow problems are usually approximated on anisotropi (large aspe t ratio) meshes. This paper reviews stability results of several velo ity-pressure pairs with respe t to growing aspe t ratio of the elements in the mesh. For further pairs numeri al tests are des ribed. Related results are mentioned.

متن کامل

Optimal Anisotropic Meshes for Minimizing Interpolation Errors in L-norm

In this paper, we present a new optimal interpolation error estimate in Lp norm (1 ≤ p ≤ ∞) for finite element simplicial meshes in any spatial dimension. A sufficient condition for a mesh to be nearly optimal is that it is quasi-uniform under a new metric defined by a modified Hessian matrix of the function to be interpolated. We also give new functionals for the global moving mesh method and ...

متن کامل

Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm

In this paper, we present a new optimal interpolation error estimate in Lp norm (1 ≤ p ≤ ∞) for finite element simplicial meshes in any spatial dimension. A sufficient condition for a mesh to be nearly optimal is that it is quasi-uniform under a new metric defined by a modified Hessian matrix of the function to be interpolated. We also give new functionals for the global moving mesh method and ...

متن کامل

economic optimization and energy consumption in tray dryers

دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...

15 صفحه اول

Evolutionary Approach for Energy Minimizing Vehicle Routing Problem with Time Windows and Customers’ Priority

A new model and solution for the energy minimizing vehicle routing problem with time windows (EVRPTW) and customers’ priority is presented in this paper. In this paper unlike prior attempts to minimize cost by minimizing overall traveling distance, the model also incorporates energy minimizing which meets the latest requirements of green logistics. This paper includes the vehicles load as an ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2021

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/21m1397520