Engineering Myocardial Tissue Patches with Hierarchical Structure–Function
نویسندگان
چکیده
منابع مشابه
Myocardial Tissue Engineering
Many lives are lost due to heart diseases including myocardial infarction and cardiomyopathy. Recent reports have demonstrated that regenerative medicine has promising potential for recovering severe heart failure. Regenerative therapies for heart failure include cytokine, gene and cell therapy. Because many types of cardiovascular stem cells have been identified and their clinical potentials h...
متن کاملEngineering myocardial tissue.
To create an artificial heart is one of the most ambitious dreams of the young field of tissue engineering, a dream that, when publicly announced in 1999 (LIFE initiative around M. Sefton), provoked as much compassion as scepticism in the scientific and lay press. Today, it is fair to state that the field is still far away from having built the "bioartificial heart." Nevertheless, substantial p...
متن کاملRenovation of the injured heart with myocardial tissue engineering.
Tissue engineering aims to create, repair and/or replace tissues and organs by using cells, scaffolds, biologically active molecules and physiologic signals. It is an interdisciplinary field that integrates aspects of engineering, chemistry, biology and medicine. One of the most challenging goals in the field of cardiovascular tissue engineering is the creation of a heart muscle patch. This rev...
متن کاملPolyurethane-based scaffolds for myocardial tissue engineering.
Bi-layered scaffolds with a 0°/90° lay-down pattern were prepared by melt-extrusion additive manufacturing (AM) using a poly(ester urethane) (PU) synthesized from poly(ε-caprolactone) diol, 1,4-butandiisocyanate and l-lysine ethyl ester dihydrochloride chain extender. Rheological analysis and differential scanning calorimetry of the starting material showed that compression moulded PU films wer...
متن کاملMyocardial tissue engineering using electrospun nanofiber composites
Emerging trends for cardiac tissue engineering are focused on increasing the biocompatibility and tissue regeneration ability of artificial heart tissue by incorporating various cell sources and bioactive molecules. Although primary cardiomyocytes can be successfully implanted, clinical applications are restricted due to their low survival rates and poor proliferation. To develop successful car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Biomedical Engineering
سال: 2014
ISSN: 0090-6964,1573-9686
DOI: 10.1007/s10439-014-1210-6