Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds
نویسندگان
چکیده
منابع مشابه
Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds.
Induced pluripotent stem cells (iPSCs) are generated from adult somatic cells through the induction of key transcription factors that restore the ability to become any cell type found in the body. These cells are of interest for tissue engineering due to their potential for developing patient-specific therapies. As the technology for generating iPSCs advances, it is important to concurrently in...
متن کاملInduced pluripotent stem cells for neural tissue engineering.
Induced pluripotent stem cells (iPSCs) hold great promise for cell therapies and tissue engineering. Neural crest stem cells (NCSCs) are multipotent and represent a valuable system to investigate iPSC differentiation and therapeutic potential. Here we derived NCSCs from human iPSCs and embryonic stem cells (ESCs), and investigated the potential of NCSCs for neural tissue engineering. The differ...
متن کاملThe Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering
Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...
متن کاملCartilage tissue engineering identifies abnormal human induced pluripotent stem cells
Safety is the foremost issue in all human cell therapies, but human induced pluripotent stem cells (iPSCs) currently lack a useful safety indicator. Studies in chimeric mice have demonstrated that certain lines of iPSCs are tumorigenic; however a similar screen has not been developed for human iPSCs. Here, we show that in vitro cartilage tissue engineering is an excellent tool for screening hum...
متن کاملEngineering bone tissue substitutes from human induced pluripotent stem cells.
Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomaterials Science
سال: 2015
ISSN: 2047-4830,2047-4849
DOI: 10.1039/c4bm00299g