ENHANCED ARTIFICIAL NEURAL NETWORK ALGORITHMS FOR FAST RADAR THREATS IDENTIFICATION
نویسندگان
چکیده
منابع مشابه
Distillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملdistillation column identification using artificial neural network
â abstract: in this paper, artificial neural network (ann) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. the actual input-output data of the system were measured in order to be used for system identification based on root mean square error (rmse) minimization approach. it was shown that the designed recurrent neural network is able to pr...
متن کاملFast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملArtificial neural network for system identification in neural networks
Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron of the desert locust, in response to...
متن کاملAssessing Artificial Neural Network Pruning Algorithms
In this study, three major pruning techniques are used to examine the effects of network pruning on classification accuracy. A feed-forward neural network structure which learns the characteristics of the training data via the backpropagation learning algorithm is employed to classify a multisource remotely sensed data set. An important conclusion from this study is that, of the three technique...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Conference on Electrical Engineering
سال: 1999
ISSN: 2636-4441
DOI: 10.21608/iceeng.1999.62555