Enhancing semantic belief function to handle decision conflicts in SoS using k-means clustering
نویسندگان
چکیده
منابع مشابه
Improved K-Means Algorithm in Text Semantic Clustering
Text clustering is a very important technology in the area of text data mining. The semantic calculation method can greatly improve the computational. The aim of this paper is to improve the existing text clustering algorithms, for Chinese text and used semantic clustering method. First, in similarity calculation module of the clustering, used a staged and integrated semantic similarity algorit...
متن کاملEnhancing K-Means using class labels
Clustering is a relevant problem in machine learning where the main goal is to locate meaningful partitions of unlabeled data. In the case of labeled data, a related problem is supervised clustering, where the objective is to locate classuniform clusters. Most current approaches to supervised clustering optimize a score related to cluster purity with respect to class labels. In particular, we p...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملTraffic Anomaly Detection Using K-Means Clustering
Data mining techniques make it possible to search large amounts of data for characteristic rules and patterns. If applied to network monitoring data recorded on a host or in a network, they can be used to detect intrusions, attacks and/or anomalies. This paper gives an introduction to Network Data Mining, i.e. the application of data mining methods to packet and flow data captured in a network,...
متن کاملClustering Indus Texts using K-means
One of the most important undeciphered scripts of the ancient world is the Indus script. Earlier studies had focused on the correlations between signs in the Indus texts using various statistical and computational techniques such as N-grams or Markov chains. In the present study, K-means clustering, an unsupervised machine learning technique is used to identify clusters of similar texts without...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PeerJ Computer Science
سال: 2021
ISSN: 2376-5992
DOI: 10.7717/peerj-cs.468