Ensemble Averaging for Dynamical Systems Under Fast Oscillating Random Boundary Conditions
نویسندگان
چکیده
منابع مشابه
Reductions and Deviations for Stochastic Partial Differential Equations under Fast Dynamical Boundary Conditions
As a model for multiscale systems under random influences on physical boundary, a stochastic partial differential equation under a fast random dynamical boundary condition is investigated. An effective equation is derived and justified by reducing the random dynamical boundary condition to a random static boundary condition. The effective system is still a stochastic partial differential equati...
متن کاملAveraging Principle for Quasi-geostrophic Motions under Rapidly Oscillating Forcing
In this paper, the averaging principle for quasi-geostrophic motions with rapidly oscillating forcing is proved, both on nite but large time intervals and on the entire time axis. This includes comparison estimate, stability estimate, and convergence result between quasi-geostrophic motions and its averaged motions. Furthermore, the existence of almost periodic quasi-geostrophic motions and att...
متن کاملSensitivity Analysis for Oscillating Dynamical Systems
Boundary value formulations are presented for exact and efficient sensitivity analysis, with respect to model parameters and initial conditions, of different classes of oscillating systems. Methods for the computation of sensitivities of derived quantities of oscillations such as period, amplitude and different types of phases are first developed for limit-cycle oscillators. In particular, a no...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولContinuous Averaging in Dynamical Systems
The method of continuous averaging can be regarded as a combination of the Lie method, where a change of coordinates is constructed as a shift along solutions of a differential equation and the Neishtadt method, well-known in perturbation theory for ODE in the presence of exponentially small effects. This method turns out to be very effective in the analysis of one-and multi-frequency averaging...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Analysis and Applications
سال: 2014
ISSN: 0736-2994,1532-9356
DOI: 10.1080/07362994.2014.958781