Entangling distant resonant exchange qubits via circuit quantum electrodynamics
نویسندگان
چکیده
منابع مشابه
Resonant quantum gates in circuit quantum electrodynamics
G. Haack,1 F. Helmer,2 M. Mariantoni,3 F. Marquardt,4 and E. Solano5,6 1Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland 2Department of Physics, ASC and CeNS, Ludwig-Maximilians-Universität, Theresienstrasse 37, 80333 München, Germany 3Department of Physics, University of California, Santa Barbara, California 93106, USA 4Institut für Theoretische Physik, Un...
متن کاملQuantum electrodynamics of qubits
A systematic description of a spin one-half system endowed with magnetic moment or any other two-level system qubit interacting with the quantized electromagnetic field is developed. This description exploits a close analogy between a two-level system and the Dirac electron that comes to light when the two-level system is described within the formalism of second quantization in terms of fermion...
متن کاملTwo-qubit gates for resonant exchange qubits.
A new approach to single-qubit operations using exchange interactions of single electrons in gate-defined quantum dots has recently been demonstrated: the resonant exchange qubit. We show that two-qubit operations, specifically the controlled phase gate, can be performed between resonant exchange qubits very straightforwardly, using a single exchange pulse. This is in marked contrast to the bes...
متن کاملHybrid teleportation via entangled coherent states in circuit quantum electrodynamics
We propose a deterministic scheme for teleporting an unknown qubit through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states brings a discretevariable unkn...
متن کاملInducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics.
We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that inject...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2016
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.94.205421