Equivalence groupoid of a class of variable coefficient Korteweg–de Vries equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly nonlinear waves in water of variable depth: Variable-coefficient Korteweg-de Vries equation

In the present work, utilizing the two-dimensional equations of an incompressible inviscid fluid and the reductive perturbation method, we studied the propagation of weakly nonlinear waves in water of variable depth. For the case of slowly varying depth, the evolution equation is obtained as a variable-coefficient Korteweg–de Vries (KdV) equation. A progressive wave type of solution, which sati...

متن کامل

Explicit exact solutions for variable coefficient Broer-Kaup equations

Based on symbolic manipulation program Maple and using Riccati equation mapping method several explicit exact solutions including kink, soliton-like, periodic and rational solutions are obtained for (2+1)-dimensional variable coefficient Broer-Kaup system in quite a straightforward manner. The known solutions of Riccati equation are used to construct new solutions for variable coefficient Broer...

متن کامل

Symmetry, Integrability and Exact Solutions of a Variable-Coefficient Korteweg-de Vries (vcKdV) Equation

In this paper, a variable-coefficient Korteweg-de Vries (vcKdV) equation which was proposed to describe the propagation of weakly nonlinear waves in water of variable depth is investigated in detail. Firstly, the Lie point symmetries and some group invariant solutions of this equation are presented. Furthermore, the integrability property of this variable-coefficient equation is studied followi...

متن کامل

A numerical algorithm for solving a class of matrix equations

In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$  by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.

متن کامل

Generation of Secondary Solitary Waves in the Variable-Coefficient Korteweg-de Vries Equation

We consider the solitary wave solutions of a Korteweg-de Vries equation, where the coefficients in the equation vary with time over a certain region. When these coefficients vary rapidly compared with the solitary wave, then it is well-known that the solitary wave may fission into two or more solitary waves. On the other hand, when these coefficients vary slowly, the solitary wave deforms adiab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2017

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.5004973