Equivalent Blocks of Finite General Linear Groups in Non-describing Characteristic
نویسندگان
چکیده
منابع مشابه
Harish-chandra Vertices and Steinberg's Tensor Product Theorem for General Linear Groups in Non-describing Characteristic
Let G be a nite group of Lie type deened over some nite eld GF(q). Let k be a eld of positive characteristic p not dividing q. Hecke functors tie together the representation theory of kG and that of Hecke algebras associated with nite reeection groups. In DDu1] the theory of vertices and sources for such algebras was introduced in the case of Hecke algebras H of type A, (that is Hecke algebras ...
متن کاملON THE CHARACTERISTIC DEGREE OF FINITE GROUPS
In this article we introduce and study the concept of characteristic degree of a subgroup in a finite group. We define the characteristic degree of a subgroup H in a finite group G as the ratio of the number of all pairs (h,α) ∈ H×Aut(G) such that h^α∈H, by the order of H × Aut(G), where Aut(G) is the automorphisms group of G. This quantity measures the probability that H can be characteristic ...
متن کاملFinite p-groups with few non-linear irreducible character kernels
Abstract. In this paper, we classify all of the finite p-groups with at most three non linear irreducible character kernels.
متن کاملNon-linear residually finite groups
We prove that groups 〈a, b, t | tat = a, tbt = b〉 are not linear provided k, l 6∈ {−1, 1}. As a consequence we obtain the first example of a non-linear residually finite 1related group.
متن کاملQuadratic Unipotent Blocks in General Linear, Unitary and Symplectic Groups
An irreducible ordinary character of a finite reductive group is called quadratic unipotent if it corresponds under Jordan decomposition to a semisimple element s in a dual group such that s = 1. We prove that there is a bijection between, on the one hand the set of quadratic unipotent characters of GL(n, q) or U(n, q) for all n ≥ 0 and on the other hand, the set of quadratic unipotent characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2002
ISSN: 0021-8693
DOI: 10.1006/jabr.2001.8988