Error Analysis of a Projection Method for the Navier–Stokes Equations With Coriolis Force

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error analysis of a projection method for the Navier–Stokes equations with Coriolis force

In this paper a projection method for the Navier–Stokes equations with Coriolis force is considered. This time-stepping algorithm takes into account the Coriolis terms both on prediction and correction steps. We study the accuracy of its semi-discretized form and show that the velocity is weakly first-order approximation and the pressure is weakly order 1 2 approximation. Mathematics Subject Cl...

متن کامل

Error Analysis of a Projection Method for the Navier-stokes Equations with Coriolis

FIG. 1.1. STR geometry. being quite popular these methods require often a large amount of CPU time to simulate even 2D benchmark models if high accuracy is desired. Moreover, their handling of geometry and meshes serves as a source of additional errors in velocity and pressure fields. For example, the fictitious boundary approach often uses a fixed mesh and therefore may capture boundaries of a...

متن کامل

A discrete projection method for incompressible viscous flow with coriolis force

The paper presents a new discrete projection method for the numerical solution of the Navier-Stokes equations with Coriolis force term. On an algebraic level we interpret one time step of the projection method as an incomplete factorization of the linearized Navier-Stokes system and as the iteration of an Uzawa type algorithm with special preconditioning for the pressure block. This enables us ...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Shallow water equations with a complete Coriolis force and topography

This paper derives a set of two dimensional equations describing a thin inviscid fluid layer flowing over topography in a frame rotating about an arbitrary axis. These equations retain various terms involving the locally horizontal components of the angular velocity vector that are discarded in the usual shallow water equations. The obliquely rotating shallow water equations are derived both by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Fluid Mechanics

سال: 2009

ISSN: 1422-6928,1422-6952

DOI: 10.1007/s00021-009-0299-0