Essential Forward Weak KAM Solution for the Convex Hamilton—Jacobi Equation

نویسندگان

چکیده

for a convex, coercive continuous Hamiltonian on closed Riemannian manifold M, we construct unique forward weak KAM solution of $$H(x,{d_x}u) = c(H)$$ by vanishing discount approach, where c(H) is the Mañé critical value. We also discuss dynamical significance such special solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak KAM

Here, we extend the weak KAM and Aubry-Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton-Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtai...

متن کامل

Fast Weak-kam Integrators

— We consider a numerical scheme for Hamilton-Jacobi equations based on a direct discretization of the Lax-Oleinik semi-group. We prove that this method is convergent with respect to the time and space stepsizes provided the solution is Lipschitz, and give an error estimate. Moreover, we prove that the numerical scheme is a geometric integrator satisfying a discrete weak-KAM theorem which allow...

متن کامل

KAM Theorem for the Nonlinear Schrödinger Equation

We prove the persistence of finite dimensional invariant tori associated with the defocusing nonlinear Schrödinger equation under small Hamiltonian perturbations. The invariant tori are not necessarily small.

متن کامل

Weak Kam Theory for General Hamilton-jacobi Equations I: the Solution Semigroup under Proper Conditions

We consider the following evolutionary Hamilton-Jacobi equation with initial condition: { ∂tu(x, t) +H(x, u(x, t), ∂xu(x, t)) = 0, u(x, 0) = φ(x). Under some assumptions on H(x, u, p) with respect to p and u, we provide a variational principle on the evolutionary Hamilton-Jacobi equation. By introducing an implicitly defined solution semigroup, we extend Fathi’s weak KAM theory to certain more ...

متن کامل

Weak Kam Theory for Multidimensional Maps

In this paper we discuss a weak version of KAM theory for multidimensional maps that arise from the discretization of the minimal action principle. These systems have certain invariant sets, the Mather sets, which are the generalization of KAM tori in the non-differentible case. We generalize viscosity solution methods to study discrete systems. In particular, we show that, under non-resonance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Sinica

سال: 2022

ISSN: ['1439-7617', '1439-8516']

DOI: https://doi.org/10.1007/s10114-022-1063-0