Essential numerical ranges for linear operator pencils

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability Radius of Linear Operator Pencils

Let T and S be two bounded linear operators from Banach spaces X into Y and suppose that T is Fredholm and the stability number k(T ;S) is 0. Let d(T ;S) be the supremum of all r > 0 such that dimN(T − λS) and codim R(T − λS) are constant for all λ with |λ| < r. It was proved in 1980 by H. Bart and D.C. Lay that d(T ;S) = limn→∞ γn(T ;S) , where γn(T ;S) are some non-negative (extended) real nu...

متن کامل

Linear maps transforming the higher numerical ranges

Let k ∈ {1, . . . , n}. The k-numerical range of A ∈Mn is the set Wk(A) = {(trX∗AX)/k : X is n× k, X∗X = Ik}, and the k-numerical radius of A is the quantity wk(A) = max{|z| : z ∈ Wk(A)}. Suppose k > 1, k′ ∈ {1, . . . , n′} and n′ < C(n, k)min{k′, n′ − k′}. It is shown that there is a linear map φ : Mn → Mn′ satisfying Wk′(φ(A)) = Wk(A) for all A ∈ Mn if and only if n′/n = k′/k or n′/n = k′/(n−...

متن کامل

Reductions of operator pencils

We study problems associated with an operator pencil, i.e., a pair of operators on Banach spaces. Two natural problems to consider are linear constrained differential equations and the description of the generalized spectrum. The main tool to tackle either of those problems is the reduction of the pencil. There are two kinds of natural reduction operations associated to a pencil, which are conj...

متن کامل

Numerical Ranges of the Powers of an Operator

The numerical range W (A) of a bounded linear operator A on a Hilbert space is the collection of complex numbers of the form (Av, v) with v ranging over the unit vectors in the Hilbert space. In terms of the location of W (A), inclusion regions are obtained for W (Ak) for positive integers k, and also for negative integers k if A−1 exists. Related inequalities on the numerical radius w(A) = sup...

متن کامل

Inclusion regions for numerical ranges and Linear Preservers

There has been considerable interest in studying inclusion regions for numerical ranges. It is in fact very useful in knowing inclusion regions for W (A). For example, it is well known (see [4, Chapter 1]) that W (A) ⊆ IR if and only if A = A∗; W (A) ⊆ [0,∞) if and only if A is positive semidefinite; andW (A) ⊆ (0,∞) if and only if A is positive definite. Moreover, Ando [1] (see also [2]) showe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IMA Journal of Numerical Analysis

سال: 2019

ISSN: 0272-4979,1464-3642

DOI: 10.1093/imanum/drz049