Estimating Periodicities in Symbolic Sequences Using Sparse Modeling
نویسندگان
چکیده
منابع مشابه
estimating claims reserves using ibnr reserves
شرکت های بیمه در قبال بیمه گذاران متعهد می شوند که به ازای دریافت حق بیمه، خسارت وارده به بیمه گذاران را جبران نمایند. بنابراین بیمه گر همیشه مبالغی را بر عهده دارد که متعلق به بیمه گذاران است و مربوط به تعهدات آینده می باشد. این مبالغ را ذخایر فنی یا technical reserves گویند. بیمه گر موظف است در پایان سال مالی، هنگام بستن حساب ها، ذخایر فنی را محاسبه و نگهداری کند. پس از وقوع خسارت، بیمه گذار ...
Spectral sum rules and search for periodicities in DNA sequences
Periodic patterns play the important regulatory and structural roles in genomic DNA sequences. Commonly, the underlying periodicities should be understood in a broad statistical sense, since the corresponding periodic patterns have been strongly distorted by the random point mutations and insertions/deletions during molecular evolution. The latent periodicities in DNA sequences can be efficient...
متن کاملEstimating Conditional Densities from Sparse Data for Statistical Language Modeling
The Maximum Likelihood Set (MLS) was recently introduced in [1] as an effective, parameter-free technique for estimating a probability mass function (pmf) from sparse data. The MLS contains all pmfs that assign merely a higher likelihood to the observed counts than to any other set of counts, for the same sample size. In this paper, the MLS is extended to the case of conditional density estimat...
متن کاملEstimating and simulating Poisson processes having trends or multiple periodicities
We develop and evaluate procedures for estimating and simulating nonhomogeneous Poisson processes having an exponential rate function, where the exponent may include a polynomial component or some trigonometric components or both. Maximum likelihood estimates of the unknown continuous parameters of the rate function are obtained numerically, and the degree of the polynomial rate component is de...
متن کاملSimilarity of symbolic sequences
A new numerical characterization of symbolic sequences is proposed. The partition of sequence based on Ke and Tong algorithm is a starting point. Algorithm decomposes original sequence into set of distinct subsequences a patterns. The set of subsequences common for two symbolic sequences (their intersection) is proposed as a measure of similarity between them. The new similarity measure works w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2015
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2015.2404314