Estimation and incommutativity in mixed models
نویسندگان
چکیده
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملSelection and estimation for mixed graphical models.
We consider the problem of estimating the parameters in a pairwise graphical model in which the distribution of each node, conditioned on the others, may have a different exponential family form. We identify restrictions on the parameter space required for the existence of a well-defined joint density, and establish the consistency of the neighbourhood selection approach for graph reconstructio...
متن کاملRobust MM-Estimation and Inference in Mixed Linear Models
Mixed linear models are used to analyse data in many settings. These models generally rely on the normality assumption and are often fitted by means of the maximum likelihood estimator (MLE) or the restricted maximum likelihood estimator (REML). However, the sensitivity of these estimation techniques and related tests to this underlying assumption has been identified as a weakness that can even...
متن کاملBayesian Mixed Frequency Estimation of DSGE models
In this paper, we present an alternative strategy for estimation of DSGE models when data is available at di¤erent time intervals. Our method is based on a data augmentation technique within Bayesian estimation of structural models and allows us to jointly use data at di¤erent frequencies. The bene ts achieved via this methodology will be twofold, resolution of time aggregation bias and identi ...
متن کاملJoint Estimation for Normal Orthogonal Mixed Models
Commutative Jordan algebras are used to express the structure of mixed orthogonal models and to derive complete sufficient statistics. From these statistics, UMVUE, (Uniformly Minimum Variance Unbiased Estimators), are derived for the relevant parameters, first of single models then of several such models. These models may correspond to experiments designed separately so our results may be seen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2017
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2017.07.002