Estimation by the Minimum Distance Method in Nonparametric Stochastic Difference Equations
نویسندگان
چکیده
منابع مشابه
A note on penalized minimum distance estimation in nonparametric regression
The authors introduce a penalized minimum distance regression estimator. They show the estimator to balance, among a sequence of nested models of increasing complexity, the L1–approximation error of each model class and a penalty term which reflects the richness of each model and serves as a upper bound for the estimation error. Une note concernant l’estimation par distance minimale pénalisée e...
متن کاملVariance Estimation in Nonparametric Regression via the Difference Sequence Method
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for ...
متن کاملNonparametric estimation for stochastic differential equations with random effects
We consider N independent stochastic processes (Xj(t), t ∈ [0, T ]), j = 1, . . . , N , defined by a one-dimensional stochastic differential equation with coefficients depending on a random variable φj and study the nonparametric estimation of the density of the random effect φj in two kinds of mixed models. A multiplicative random effect and an additive random effect are successively considere...
متن کاملVariance Estimation in Nonparametric Regression via the Difference Sequence Method by Lawrence
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for ...
متن کاملVariance estimation in nonparametric regression via the difference sequence method (short title: Sequence-based variance estimation)
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematical Statistics
سال: 1954
ISSN: 0003-4851
DOI: 10.1214/aoms/1177728782