Euler’s Pentagonal Number Theorem and the Rogers-Fine Identity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler’s Pentagonal Number Theorem and the Rogers-fine Identity

Euler discovered the pentagonal number theorem in 1740 but was not able to prove it until 1750. He sent the proof to Goldbach and published it in a paper that finally appeared in 1760. Moreover, Euler formulated another proof of the pentagonal number in his notebooks theorem around 1750. Euler did not publish this proof or communicate it to his correspondents, probably because of the difficulty...

متن کامل

The truncated pentagonal number theorem

A new expansion is given for partial sums of Euler’s pentagonal number series. As a corollary we derive an infinite family of inequalities for the partition function, p(n).

متن کامل

Further Multivariate Generalizations of Euler’s Pentagonal Number Theorem and the Rogers-ramanujan Identities

We use the idea of index invariance under the Franklin mapping to prove higher power generalizations of two results discovered by M. V. Subbarao. We then apply similar ideas to a two-variable generalization of the Rogers-Ramanujan identities due to G. E. Andrews.

متن کامل

A Note on The Rogers-Fine Identity

In this paper, we derive an interesting identity from the Rogers-Fine identity by applying the q-exponential operator method.

متن کامل

The Tri-pentagonal Number Theorem and Related Identities

Abstract. I revisit an automated proof of Andrews’ pentagonal number theorem found by Riese. I uncover a simple polynomial identity hidden behind his proof. I explain how to use this identity to prove Andrews’ result along with a variety of new formulas of similar type. I reveal an interesting relation between the tri-pentagonal theorem and items (19), (20), (94), (98) on the celebrated Slater ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Combinatorics

سال: 2012

ISSN: 0218-0006,0219-3094

DOI: 10.1007/s00026-012-0139-4