Evaluation of Enterprise Financial Risk Level under Digital Transformation with Artificial Neural Network

نویسندگان

چکیده

With the continuous development of national economy, enterprises have gradually entered digital age from industrial age, and transformation has become a must for enterprise survival. Digital empowers high-quality puts forward higher requirements financial risk management. The problem is one that every business deal with at some point during its operations. ushered in new era also weather vane, which beneficial to comprehensively avoid risks, do good job system defense multiparty coordination, can quickly accurately manage corporate finances solve risks timely manner. Starting background transformation, this article clarifies significance preventing era. Combining it artificial neural networks, work proposes an intelligent method assessing level context. This EFRL-ResNet network, improved on basis ResNet. At same time, depth-wise separable convolution (DSConv) structure Mobile-Net combined ResNet network build lightweight deep network. Through case risk, verified reduce training time model without losing accuracy grade evaluation. paper improves loss function unbalanced number data samples assessment model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Cell Deformation Modeling Under External Force Using Artificial Neural Network

Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...

متن کامل

Building Financial Time Series Predictions with Evolutionary Artificial Neural Network

Price forecasting and trading strategies modeling are examined with major international stock indexes under different time horizons. Results demonstrate that an accurate prediction is equally important as a stable saving rate for long-term survivability. The best economic performances are achieved for a one-year investment horizon with longer training not necessarily leading to improved accurac...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Security and Communication Networks

سال: 2022

ISSN: ['1939-0122', '1939-0114']

DOI: https://doi.org/10.1155/2022/1882100