Evaluation techniques for zero-dimensional primary decomposition

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation techniques for zero-dimensional primary decomposition

This paper presents a new algorithm that computes the local algebras of the roots of a zero-dimensional polynomial equation system, with a number of operations in the coefficient field that is polynomial in the number of variables, in the evaluation cost of the equations and in a Bézout number.

متن کامل

Evaluation Techniques for Zero-dimensional Primary Decomposition Extended Abstract

In this talk, we will present an algorithm that computes the local algebra of the roots of a zero-dimensional polynomial equations system, whose cost is polynomial in the number of variables, in the evaluation cost of the equations and in the Bézout number of the input system. Let K be a field of characteristic zero, and let f1, . . . , fm, g be polynomials in K[x1, . . . , xn] such that the sy...

متن کامل

Primary decomposition of zero-dimensional ideals over finite fields

A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp’s algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a...

متن کامل

Zero Decomposition with Multiplicity of Zero-Dimensional Polynomial Systems

We present a zero decomposition theorem and an algorithm based on Wu’s method, which computes a zero decomposition with multiplicity for a given zerodimensional polynomial system. If the system satisfies some condition, the zero decomposition is of triangular form.

متن کامل

Primary decomposition of zero-dimensional ideals: Putting Monico’s algorithm into practice

Monico published in [Journal of Symbolic Computation, 34(5):451–459, 2002] an algorithm to compute the primary decomposition of a zero-dimensional ideal, that mostly relies on a characteristic polynomial computation modulo the input ideal, and its factorization. We revisit this algorithm, and discuss Maple and Magma implementations that contradict the somehow pessimistic conclusions of Monico’s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2009

ISSN: 0747-7171

DOI: 10.1016/j.jsc.2008.02.008