Evolutionary dynamics of networked multi-person games: mixing opponent-aware and opponent-independent strategy decisions
نویسندگان
چکیده
منابع مشابه
Opponent Modeling in Real-Time Strategy Games
Real-time strategy games present an environment in which game AI is expected to behave realistically. One feature of realistic behaviour in game AI is the ability to recognise the strategy of the opponent player. This is known as opponent modeling. In this paper, we propose an approach of opponent modeling based on hierarchically structured models. The top-level of the hierarchy can classify th...
متن کاملOpponent Modelling and Commercial Games
To play a game well a player needs to understand the game. To defeat an opponent, it may be sufficient to understand the opponent’s weak spots and to be able to exploit them. In human practice, both elements (knowing the game and knowing the opponent) play an important role. This article focuses on opponent modelling independent of any game. So, the domain of interest is a collection of two-per...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملOpponent Behaviour Recognition for Real-Time Strategy Games
In Real-Time Strategy (RTS) video games, players (controlled by humans or computers) build structures and recruit armies, fight for space and resources in order to control strategic points, destroy the opposing force and ultimately win the game. Players need to predict where and how the opponents will strike in order to best defend themselves. Conversely, assessing how the opponents will defend...
متن کاملExploiting Opponent Modeling for Learning in Multi-Agent Adversarial Games
An issue with learning effective policies in multi-agent adversarial games is that the size of the search space can be prohibitively large when the actions of both teammates and opponents are considered simultaneously. Opponent modeling, predicting an opponent’s actions in advance of execution, is one approach for selecting actions in adversarial settings, but it is often performed in an ad hoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2019
ISSN: 1367-2630
DOI: 10.1088/1367-2630/ab241b