Exact 2-point function in Hermitian matrix model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

n-Hermitian Matrix model

We derive the loop equations for the d-dimensional n-Hermitian matrix model. These are a consequence of the Schwinger-Dyson equations of the model. Moreover we show that in leading order of large N the loop equations form a closed set. In particular we derive the loop equations for the n = 2 matrix model recently proposed to describe the coupling of Two-dimensional quantum gravity to conformal ...

متن کامل

Hermitian Matrix Model with Plaquette Interaction

We study a hermitian (n+ 1)-matrix model with plaquette interaction, n i=1 MA i MA i. By means of a conformal transformation we rewrite the model as an O(n) model on a random lattice with a non polynomial potential. This allows us to solve the model exactly. We investigate the critical properties of the plaquette model and find that for n ∈] − 2, 2] the model belongs to the same universality cl...

متن کامل

1 / N 2 correction to free energy in hermitian two - matrix model

Using the loop equations we find an explicit expression for genus 1 correction in hermitian two-matrix model in terms of holomorphic objects associated to spectral curve arising in large N limit. Our result generalises known expression for F 1 in hermitian one-matrix model. We discuss the relationship between F 1 , Bergmann tau-function on Hurwitz spaces, G-function of Frobenius manifolds and d...

متن کامل

Topological expansion for the 1-hermitian matrix model correlation functions

We rewrite the loop equations of the hermitian matrix model, in a way which involves no derivative with respect to the potential, we compute all the correlation functions, to all orders in the topological 1/N expansion, as residues on an hyperelliptical curve. Those residues, can be represented as Feynmann graphs of a cubic field theory on the curve.

متن کامل

Higher Genus Correlators from the Hermitian One-Matrix Model

We develop an iterative algorithm for the genus expansion of the hermitian N×N one-matrix model (= the Penner model in an external field). By introducing moments of the external field, we prove that the genus g contribution to the mloop correlator depends only on 3g− 2+m lower moments (3g− 2 for the partition function). We present the explicit results for the partition function and the one-loop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2009

ISSN: 1029-8479

DOI: 10.1088/1126-6708/2009/12/003