Exact likelihood computation for nonlinear DSGE models with heteroskedastic innovations
نویسندگان
چکیده
منابع مشابه
Predictive Likelihood Comparisons with DSGE and DSGE-VAR Models
In this paper we treat the issue of forecasting with DSGE and DSGE-VAR models, with particular attention to Bayesian estimation of the predictive distribution and its mean and covariance. As a novel contribution to the forecasting literature, which extends beyond (log-linearized) DSGE models and DSGE-VARs, we show how the value of the h-step-ahead marginal and joint predictive likelihood for a ...
متن کاملsphet: Spatial Models with Heteroskedastic Innovations in R
This introduction to the R package sphet is a (slightly) modified version of Piras (2010), published in the Journal of Statistical Software. sphet is a package for estimating and testing spatial models with heteroskedastic innovations. We implement recent generalized moments estimators and semiparametric methods for the estimation of the coefficients variance-covariance matrix. This paper is a ...
متن کاملUSING SUBSPACE METHODS FOR ESTIMATING ARMA MODELS FOR MULTIVARIATE TIME SERIES WITH CONDITIONALLY HETEROSKEDASTIC INNOVATIONS By
This paper deals with the estimation of linear dynamic models of the ARMA type for the conditional mean for time series with conditionally heteroskedastic innovation process widely used in modelling financial time series. Estimation is performed using subspace methods which are known to have computational advantages as compared to prediction error methods based on criterion minimization. These ...
متن کاملMarginalized Predictive Likelihood Comparisons of Linear Gaussian State-Space Models with Applications to DSGE, DSGE-VAR, and VAR Models
The predictive likelihood is useful for ranking models in forecast comparison exercises using Bayesian inference. We discuss how it can be estimated, by means of marginalization, for any subset of the observables in linear Gaussian state-space models. We compare macroeconomic density forecasts for the euro area of a DSGE model to those of a DSGE-VAR, a BVAR, and a multivariate random walk over ...
متن کاملCorrected Maximum Likelihood Estimators in Linear Heteroskedastic Regression Models*
The linear heteroskedastic regression model, for which the variance of the response is given by a suitable function of a set of linear exogenous variables, is very useful in econometric applications. We derive a simple matrix formula for the n biases of the maximum likelihood estimators of the parameters in the variance of the response, where n is the sample size. These biases are easily obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Economic Dynamics and Control
سال: 2011
ISSN: 0165-1889
DOI: 10.1016/j.jedc.2011.08.003