Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper, we deal with the initial boundary value problem of following fractional wave equation Kirchhoff type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} u_{tt}+M([u]_{\alpha, 2}^2)(-\Delta)^{\alpha}u+(-\Delta)^{s}u_{t} = \int_{0}^{t}g(t-\tau)(-\Delta)^{\alpha}u(\tau)d\tau+\lambda|u|^{q -2}u, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ M:[0, \infty)\rightarrow (0, \infty) $\end{document}</tex-math></inline-formula> is a nondecreasing and continuous function, id="M2">\begin{document}$ [u]_{\alpha, 2} Gagliardo-seminorm id="M3">\begin{document}$ u $\end{document}</tex-math></inline-formula>, id="M4">\begin{document}$ (-\Delta)^\alpha id="M5">\begin{document}$ (-\Delta)^s are Laplace operators, id="M6">\begin{document}$ g:\mathbb{R}^+\rightarrow \mathbb{R}^+ positive nonincreasing function id="M7">\begin{document}$ \lambda parameter. First, local global existence solutions obtained by using Galerkin method. Then nonexistence discussed via blow-up analysis. Our results generalize improve existing in literature.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Blow up of Solutions for a System of Nonlinear Higher-order Kirchhoff-type Equations

In this work, we consider the initial boundary value problem for the Kirchhoff-type equations with damping and source terms  utt +M (∫ Ω ∣∣∣(−△)m2 u∣∣∣2 dx) (−△) u+ |ut| ut = f1 (u, v) , vtt +M (∫ Ω ∣∣∣(−△)m2 v∣∣∣2 dx) (−△) v + |vt| vt = f2 (u, v) in a bounded domain. We prove the blow up of the solution with positive initial energy by using the technique of [26] with a modification in th...

متن کامل

Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources

Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources" (2015). This paper investigates a quasilinear wave equation with Kelvin-Voigt damping, u t t − ∆ p u − ∆u t = f (u), in a bounded domain Ω ⊂ R 3 and subject to Dirichlét boundary conditions. The operator ∆ p , 2 < p < 3, denotes the classical p-Laplacian. The nonlinear term f (u) is a source feedback t...

متن کامل

Boundary blow up solutions for fractional elliptic equations

In this article we study existence of boundary blow up solutions for some fractional elliptic equations including (−∆)u+ u = f in Ω, u = g on Ω, lim x∈Ω,x→∂Ω u(x) = ∞, where Ω is a bounded domain of class C2, α ∈ (0, 1) and the functions f : Ω → R and g : RN \ Ω̄ → R are continuous. We obtain existence of a solution u when the boundary value g blows up at the boundary and we get explosion rate f...

متن کامل

Blow-up of solutions to a class of Kirchhoff equations with strong damping and nonlinear dissipation

and many authors have studied the existence and uniqueness of global solution, the blowup of the solution (see [–] and the references therein). WhenM is not a constant function, equation (.)without the damping and source terms is often called a Kirchhoff-type wave equation; it has first been introduced by Kirchhoff [] in order to describe the nonlinear vibrations of an elastic string. When...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2021

ISSN: ['1937-1632', '1937-1179']

DOI: https://doi.org/10.3934/dcdss.2021125