Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper, we deal with the initial boundary value problem of following fractional wave equation Kirchhoff type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} u_{tt}+M([u]_{\alpha, 2}^2)(-\Delta)^{\alpha}u+(-\Delta)^{s}u_{t} = \int_{0}^{t}g(t-\tau)(-\Delta)^{\alpha}u(\tau)d\tau+\lambda|u|^{q -2}u, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ M:[0, \infty)\rightarrow (0, \infty) $\end{document}</tex-math></inline-formula> is a nondecreasing and continuous function, id="M2">\begin{document}$ [u]_{\alpha, 2} Gagliardo-seminorm id="M3">\begin{document}$ u $\end{document}</tex-math></inline-formula>, id="M4">\begin{document}$ (-\Delta)^\alpha id="M5">\begin{document}$ (-\Delta)^s are Laplace operators, id="M6">\begin{document}$ g:\mathbb{R}^+\rightarrow \mathbb{R}^+ positive nonincreasing function id="M7">\begin{document}$ \lambda parameter. First, local global existence solutions obtained by using Galerkin method. Then nonexistence discussed via blow-up analysis. Our results generalize improve existing in literature.</p>
منابع مشابه
Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملBlow up of Solutions for a System of Nonlinear Higher-order Kirchhoff-type Equations
In this work, we consider the initial boundary value problem for the Kirchhoff-type equations with damping and source terms utt +M (∫ Ω ∣∣∣(−△)m2 u∣∣∣2 dx) (−△) u+ |ut| ut = f1 (u, v) , vtt +M (∫ Ω ∣∣∣(−△)m2 v∣∣∣2 dx) (−△) v + |vt| vt = f2 (u, v) in a bounded domain. We prove the blow up of the solution with positive initial energy by using the technique of [26] with a modification in th...
متن کاملWeak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources
Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources" (2015). This paper investigates a quasilinear wave equation with Kelvin-Voigt damping, u t t − ∆ p u − ∆u t = f (u), in a bounded domain Ω ⊂ R 3 and subject to Dirichlét boundary conditions. The operator ∆ p , 2 < p < 3, denotes the classical p-Laplacian. The nonlinear term f (u) is a source feedback t...
متن کاملBoundary blow up solutions for fractional elliptic equations
In this article we study existence of boundary blow up solutions for some fractional elliptic equations including (−∆)u+ u = f in Ω, u = g on Ω, lim x∈Ω,x→∂Ω u(x) = ∞, where Ω is a bounded domain of class C2, α ∈ (0, 1) and the functions f : Ω → R and g : RN \ Ω̄ → R are continuous. We obtain existence of a solution u when the boundary value g blows up at the boundary and we get explosion rate f...
متن کاملBlow-up of solutions to a class of Kirchhoff equations with strong damping and nonlinear dissipation
and many authors have studied the existence and uniqueness of global solution, the blowup of the solution (see [–] and the references therein). WhenM is not a constant function, equation (.)without the damping and source terms is often called a Kirchhoff-type wave equation; it has first been introduced by Kirchhoff [] in order to describe the nonlinear vibrations of an elastic string. When...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S
سال: 2021
ISSN: ['1937-1632', '1937-1179']
DOI: https://doi.org/10.3934/dcdss.2021125