Existence and Continuous Dependence for Fractional Partial Hyperbolic Differential Equations
نویسندگان
چکیده
منابع مشابه
Existence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Existence Theory for Impulsive Partial Hyperbolic Functional Differential Equations Involving the Caputo Fractional Derivative
In this paper we investigate the existence and uniqueness of solutions of a class of partial impulsive hyperbolic differential equations with fixed time impulses involving the Caputo fractional derivative. Our main tool is a fixed point theorem.
متن کاملExistence and continuous dependence of mild solutions for fractional abstract differential equations with infinite delay
In this paper, we prove the existence, uniqueness, and continuous dependence of the mild solutions for a class of fractional abstract differential equations with infinite delay. The results are obtained by using the Krasnoselskii’s fixed point theorem and the theory of resolvent operators for integral equations.
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2015
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2015/875170