Existence and Ulam–Hyers stability of fixed point problem of generalized Suzuki type $$( \alpha _{*}{,\psi }_{\varphi })$$ ( α ∗ , ψ φ ) -contractive multivalued operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed point theorems for generalized contractive type multivalued maps

Without using the concept of Hausdorff metric, we prove some results on the existence of fixed points for generalized contractive multivalued maps with respect to u-distance. Consequently, several known fixed point results are either generalized or improved.

متن کامل

Fuzzy (φ, ψ)-Contractive Mapping and Fixed Point Theorem

In this paper, we define a new contractive mapping called fuzzy (φ,ψ)-contraction in fuzzy metric space and prove a fixed point theorem for this type of mapping. Finally, an example is given to illustrate the main result of this paper. Mathematics Subject Classification: 54E70; 47H25

متن کامل

Fixed point theorems for α-ψ-ϕ-contractive integral type mappings

In this paper, we introduce a new concept of α-ψ-ϕ-contractive integral type mappings and establish some new fixed point theorems in complete metric spaces.

متن کامل

Suzuki-type fixed point theorems for generalized contractive mappings‎ ‎that characterize metric completeness

‎Inspired by the work of Suzuki in‎ ‎[T. Suzuki‎, ‎A generalized Banach contraction principle that characterizes metric completeness‎, Proc‎. ‎Amer‎. ‎Math‎. ‎Soc. ‎136 (2008)‎, ‎1861--1869]‎, ‎we prove a fixed point theorem for contractive mappings‎ ‎that generalizes a theorem of Geraghty in [M.A‎. ‎Geraghty‎, ‎On contractive mappings‎, ‎Proc‎. ‎Amer‎. ‎Math‎. ‎Soc., ‎40 (1973)‎, ‎604--608]‎an...

متن کامل

Common Fixed Point of Multivalued Generalized -Weak Contractive Mappings

Abstract In this paper, fixed point and coincidence results are presented for multivalued generalized φ-weak contractive mappings on complete metric spaces, where φ : [0, +∞) −→ [0, +∞) is a lower semicontinuous function with φ(0) = 0 and φ(t) > 0 for all t > 0. Our results extend previous results by Zhang and Song (2009), as well as by Rhoades (2001), Nadler (1969), and Daffer and Kaneko (1995).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas

سال: 2016

ISSN: 1578-7303,1579-1505

DOI: 10.1007/s13398-016-0351-x