Existence of Quadrature Formulae with Almost Equal Weights

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrature formulae for Fourier coefficients

We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Michhelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a func...

متن کامل

Almost - Interpolatory Chebyshev Quadrature

The requirement that a Chebyshev quadrature formula have distinct real nodes is not always compatible with the requirement that the degree of precision of an npoint formula be at least equal to n. This condition may be expressed as | \d\ \p = 0, 1 g p, where d (dx, ■ ■ ■ , d„) with Mo(w) ~ , -IT dj = 2w A iM ; = 1, 2, • • ■ , z!, ZJ ,_, Pj(io), j = 0, 1, • • • , are the moments of the weight fu...

متن کامل

Quadrature formulae of non-standard type

We discuss quadrature formulae of highest algebraic degree of precision for integration of functions of one or many variables which are based on non-standard data, i.e., in which the information used is different from the standard sampling of function values. Among the examples given in this survey is a quadrature formula for integration over the disk, based on linear integrals on n chords, whi...

متن کامل

A Family of Gauss - Kronrod Quadrature Formulae

We show, for each n > 1, that the (2ra + l)-point Kronrod extension of the n-point Gaussian quadrature formula for the measure do-^t) = (1 + 7)2(1 t2)^2dt/((l + -y)2 47t2), -K -y < 1, has the properties that its n + 1 Kronrod nodes interlace with the n Gauss nodes and all its 2ra + 1 weights are positive. We also produce explicit formulae for the weights.

متن کامل

A Characterization of Positive Quadrature Formulae

A positive quadrature formula with n nodes which is exact for polynomials of degree In — r — 1, 0 < r < « , is based on the zeros of certain quasi-orthogonal polynomials of degree n . We show that the quasi-orthogonal polynomials that lead to the positive quadrature formulae can all be expressed as characteristic polynomials of a symmetric tridiagonal matrix with positive subdiagonal entries. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1971

ISSN: 0025-5718

DOI: 10.2307/2005135