Expansion in generalized eigenfunctions for Laplacians on graphs and metric measure spaces
نویسندگان
چکیده
منابع مشابه
Generalized Bessel and Riesz Potentials on Metric Measure Spaces
There is a rich literature on the study of Bessel and Riesz potentials on the Euclidean space R, see for example the books [23, 20, 1, 16] and the references therein. However, little is known on how to extend the Bessel and Riesz potentials to metric measure spaces in a reasonable way. This issue is interesting in that it is closely related with the study of various current topics, such as the ...
متن کاملExpansion semigroups in probabilistic metric spaces
We present some new results on the existence and the approximationof common fixed point of expansive mappings and semigroups in probabilisticmetric spaces.
متن کاملWeak Uncertainty Principle for Fractals, Graphs and Metric Measure Spaces
We develop a new approach to formulate and prove the weak uncertainty inequality, which was recently introduced by Okoudjou and Strichartz. We assume either an appropriate measure growth condition with respect to the effective resistance metric, or, in the absence of such a metric, we assume the Poincaré inequality and reverse volume doubling property. We also consider the weak uncertainty ineq...
متن کاملOn the Spectral Gap for Laplacians on Metric Graphs
This note will describe some of recent developments in the spectral theory of quantum graphs. More precisely, we are going to discuss the spectral gap the distance between two lowest eigenvalues for the Laplace operator on metric graphs in connection to geometric and topological properties of the underlying graphs. Our approach can be generalized further to include Schrödinger operators with no...
متن کاملLaplacians on Metric Graphs: Eigenvalues, Resolvents and Semigroups
The main objective of the present work is to study the negative spectrum of (differential) Laplace operators on metric graphs as well as their resolvents and associated heat semigroups. We prove an upper bound on the number of negative eigenvalues and a lower bound on the spectrum of Laplace operators. Also we provide a sufficient condition for the associated heat semigroup to be positivity pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2015
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/6639