Explicit Coleman integration for curves

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Coleman Integration for Hyperelliptic Curves

Coleman’s theory of p-adic integration figures prominently in several number-theoretic applications, such as finding torsion and rational points on curves, and computing p-adic regulators in K-theory (including p-adic heights on elliptic curves). We describe an algorithm for computing Coleman integrals on hyperelliptic curves, and its implementation in Sage.

متن کامل

Iterated Coleman Integration for Hyperelliptic Curves

The Coleman integral is a p-adic line integral. Double Coleman integrals on elliptic curves appear in Kim’s nonabelian Chabauty method, the first numerical examples of which were given by the author, Kedlaya, and Kim [3]. This paper describes the algorithms used to produce those examples, as well as techniques to compute higher iterated integrals on hyperelliptic curves, building on previous jo...

متن کامل

Coleman Integration Versus Schneider Integration on Semistable Curves

The purpose of this short note is to clarify the relation between p-adic integration on curves with semistable reduction, and the filtered (Φ, N)-module attached to the curve, following the work of Coleman and Iovita. 2000 Mathematics Subject Classification:

متن کامل

Coleman Integration for Even Degree Models of Hyperelliptic Curves

The Coleman integral is a p-adic line integral that encapsulates various quantities of number theoretic interest. Building on the work of Harrison [8], we extend the Coleman integration algorithms in [2] to even degree models of hyperelliptic curves. We illustrate our methods with numerical examples computed in Sage.

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2020

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3542