Exploring emerging manycore architectures for uncertainty quantification through embedded stochastic Galerkin methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedded Ensemble Propagation for Improving Performance, Portability and Scalability of Uncertainty Quantification on Emerging Computational Architectures

Quantifying simulation uncertainties is a critical component of rigorous predictive simulation. A key component of this is forward propagation of uncertainties in simulation input data to output quantities of interest. Typical approaches involve repeated sampling of the simulation over the uncertain input data, and can require numerous samples when accurately propagating uncertainties from larg...

متن کامل

Approximate weighted matching on emerging manycore and multithreaded architectures

Graph matching is a prototypical combinatorial problem with many applications in high performance scientific computing. Optimal algorithms for computing matchings are challenging to parallelize. Approximation algorithms are amenable to parallelization and are therefore important to compute matchings for large scale problems. Approximation algorithms also generate nearly optimal solutions that a...

متن کامل

Sparse multiresolution stochastic approximation for uncertainty quantification

Most physical systems are inevitably affected by uncertainties due to natural variabili-ties or incomplete knowledge about their governing laws. To achieve predictive computer simulations of such systems, a major task is, therefore, to study the impact of these uncertainties on response quantities of interest. Within the probabilistic framework, uncertainties may be represented in the form of r...

متن کامل

Stochastic Galerkin Methods for the Steady - State

We study the steady-state Navier-Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galer...

متن کامل

Efficient uncertainty quantification of large two-dimensional optical systems with a parallelized stochastic Galerkin method.

It is well-known that geometrical variations due to manufacturing tolerances can degrade the performance of optical devices. In recent literature, polynomial chaos expansion (PCE) methods were proposed to model this statistical behavior. Nonetheless, traditional PCE solvers require a lot of memory and their computational complexity leads to prohibitively long simulation times, making these meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Mathematics

سال: 2013

ISSN: 0020-7160,1029-0265

DOI: 10.1080/00207160.2013.840722