Exploring the representational power of graph autoencoder
نویسندگان
چکیده
While representation learning has yielded a great success on many graph tasks, there is little understanding behind the structures that are being captured by these embeddings. For example, we wonder if topological features, such as Triangle Count, Degree of node and other centrality measures concretely encoded in Furthermore, ask presence embeddings necessary for better performance downstream clustering classification. To address questions, conduct an extensive empirical study over three classes unsupervised embedding models seven different variants Graph Autoencoders. Our results show five features: Degree, Local Clustering Score, Betweenness Centrality, Eigenvector Count preserved first layer autoencoder employs SUM aggregation rule, under condition model preserves second-order proximity. We supplement further evidence features revealing hierarchy distribution aforementioned model. also with properties can outperform certain especially when relevant to task at hand. Finally, evaluate suitability our findings through test case related social influence prediction.
منابع مشابه
analysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولAdversarially Regularized Graph Autoencoder
Graph embedding is an eective method to represent graph data in a low dimensional space for graph analytics. Most existing embedding algorithms typically focus on preserving the topological structure or minimizing the reconstruction errors of graph data, but they have mostly ignored the data distribution of the latent codes from the graphs, which oen results in inferior embedding in real-worl...
متن کاملSome Graph Polynomials of the Power Graph and its Supergraphs
In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.
متن کاملAutoencoder for wind power prediction
Successful integration of renewable energy sources like wind power into smart grids largely depends on accurate prediction of power from these intermittent sources. Production of wind power cannot be controlled as the wind speed can vary based on weather conditions. Accurate prediction of wind power can assist smart grid that intelligently decides on the usage of alternative power sources based...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2021
ISSN: ['0925-2312', '1872-8286']
DOI: https://doi.org/10.1016/j.neucom.2021.06.034