Exponential Stability of Nonlinear Time-Varying Delay Differential Equations via Lyapunov–Razumikhin Technique

نویسندگان

چکیده

In this article, some new sufficient conditions for the exponential stability of nonlinear time-varying delay differential equations are given. An extension classical asymptotical theorem in terms a Lyapunov–Razumikhin function is obtained. The condition non-positivity time derivative Razumikhin weakened. Additionally, resulting asymptotic allow us to guarantee uniform and evaluate convergence rate system solutions. effectiveness results demonstrated by examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential stability of nonlinear time - varying differential equations and applications ∗

In this paper, we give sufficient conditions for the exponential stability of a class of nonlinear time-varying differential equations. We use the Lyapunov method with functions that are not necessarily differentiable; hence we extend previous results. We also provide an application to exponential stability for nonlinear time-varying control systems.

متن کامل

Inequalities and exponential decay in time varying delay differential equations

We use Lyapunov functionals to obtain sufficient conditions that guarantee exponential decay of solutions to zero of the time varying delay differential equation x ′ (t) = b(t)x(t) − a(t)x(t − h(t)). The highlights of the paper are allowing b(t) to change signs and the delay to vary with time. In addition, we obtain a criterion for the instability of the zero solution. Moreover, by comparison t...

متن کامل

Exponential Stability of Impulsive Delay Differential Equations

and Applied Analysis 3 Note that V(t∗) = Q(t∗) + C 2 ‖Φ‖ τ e ∫ t ∗

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11040896